If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-36+5x=180
We move all terms to the left:
x^2-36+5x-(180)=0
We add all the numbers together, and all the variables
x^2+5x-216=0
a = 1; b = 5; c = -216;
Δ = b2-4ac
Δ = 52-4·1·(-216)
Δ = 889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{889}}{2*1}=\frac{-5-\sqrt{889}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{889}}{2*1}=\frac{-5+\sqrt{889}}{2} $
| 6x-98=400 | | 2x-1•3=5 | | 7(5)=8x | | 16x(5-x)=64 | | 5.00-m=0.05 | | c+41+66+c+19=180 | | 5x-123=432 | | 12=v/3-(-8) | | 38+7x=8-x+4 | | 3/5=y-3/2 | | 6/4=x/3x= | | 38+7x=8+x+4 | | 3.1=7n-1.8 | | 14+4x=38+1x | | 44+85+17t=180 | | 9n-1=34 | | 4x-76=352 | | 16=2(x-4) | | 42=9x-5x-6 | | 42=y=15 | | 30+31+17z=180 | | 3x-99=270 | | 45=-5+x/2 | | 4+1x=39x | | 2x-125=119 | | 3/4b-22b+8;b=-4 | | 3s+3s+30=180 | | 3(2x-1+7=6x-3-2(-4x | | 3x/3+9=18 | | 16x+125=301 | | -3+x-1+8+x-3=6x+7-5x | | x-2+2x+11=6x+15 |